Waterfall
This part of the project documentation focuses on a task-oriented approach.
Use it as a guide to accomplish any of the Waterfall
class methods below.
Count
Count columns via the columns
parameter in the __init__
of the PandasWaterfall
or SparkWaterfall
class. An example is provided below.
from waterfall_logging.log import PandasWaterfall, SparkWaterfall
pandas_w = PandasWaterfall(columns=['user_id'])
spark_w = SparkWaterfall(columns=['user_id'])
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table_name |
str
|
Specifies the name of the table to log |
None
|
columns |
Lists[str]
|
Specifies which columns to log |
None
|
distinct_columns |
List[str]
|
Specifies which distinct column values to log |
None
|
delta_prefix |
str
|
Prefix for column names with discrete difference (delta) with previous row |
'Δ '
|
dropna |
bool
|
Whether to exclude NaN in the row counts |
False
|
row_count_column |
str
|
Column name for an added column that counts rows in table |
'Rows'
|
Source code in waterfall_logging/log.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
Count distinct
Count distinct columns via the distinct_columns
parameter in the __init__
of the PandasWaterfall
or SparkWaterfall
class. An example is provided below.
from waterfall_logging.log import PandasWaterfall, SparkWaterfall
pandas_w = PandasWaterfall(distinct_columns=['user_id'])
spark_w = SparkWaterfall(distinct_columns=['user_id'])
Note
Column names in distinct_columns
overwrite names in columns
with distinct counts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table_name |
str
|
Specifies the name of the table to log |
None
|
columns |
Lists[str]
|
Specifies which columns to log |
None
|
distinct_columns |
List[str]
|
Specifies which distinct column values to log |
None
|
delta_prefix |
str
|
Prefix for column names with discrete difference (delta) with previous row |
'Δ '
|
dropna |
bool
|
Whether to exclude NaN in the row counts |
False
|
row_count_column |
str
|
Column name for an added column that counts rows in table |
'Rows'
|
Source code in waterfall_logging/log.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
Drop NaN
Drop NaN values in the (distinct) counts of your Pandas or Spark DataFrame.
from waterfall_logging.log import PandasWaterfall, SparkWaterfall
pandas_w = PandasWaterfall(columns=['A'], dropna=True)
spark_w = SparkWaterfall(columns=['A'], dropna=True)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table_name |
str
|
Specifies the name of the table to log |
None
|
columns |
Lists[str]
|
Specifies which columns to log |
None
|
distinct_columns |
List[str]
|
Specifies which distinct column values to log |
None
|
delta_prefix |
str
|
Prefix for column names with discrete difference (delta) with previous row |
'Δ '
|
dropna |
bool
|
Whether to exclude NaN in the row counts |
False
|
row_count_column |
str
|
Column name for an added column that counts rows in table |
'Rows'
|
Source code in waterfall_logging/log.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
Log Waterfall step
Logs a Pandas or Spark DataFrame.
import pandas as pd
import pyspark
from waterfall_logging.log import PandasWaterfall, SparkWaterfall
df = pd.DataFrame(data={'A': [0,1,2,3,4,5], 'B': ['id1', 'id2', 'id3', 'id4', 'id4']})
pandas_w = PandasWaterfall(columns=['A'], distinct_columns=['B'])
pandas_w.log(table=df, reason='example', configuration_flag='initial')
spark = pyspark.sql.SparkSession.builder.enableHiveSupport().appName(str(__file__)).getOrCreate()
sdf = spark.createDataFrame(df)
spark_w = SparkWaterfall(columns=['A'], distinct_columns=['B'])
spark_w.log(table=sdf, reason='example', configuration_flag='initial')
Logs table (distinct) counts to logging DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table |
pd.DataFrame
|
DataFrame that the filtering is applied to |
required |
reason |
str
|
Specifies reasoning for DataFrame filtering step |
None
|
configuration_flag |
str
|
Specifies configurations flag used for DataFrame filtering step |
None
|
table_name |
str
|
First column in table is the |
None
|
Examples:
>>> waterfall = PandasWaterfall()
>>> waterfall.log(table, reason='Filtered in-scope bicycles', configuration_flag='inscope=True',
... table_name='sample_table')
Returns:
Type | Description |
---|---|
None
|
None |
Source code in waterfall_logging/log.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|
Write to Markdown file
Write Waterfall logging tables to Markdown files.
Under the hood uses pandas.to_markdown.
All arguments that can be provided for pandas.to_markdown()
function, can also be used in this function.
Print DataFrame in Markdown-friendly format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
bool
|
Add index (row) labels |
False
|
Examples:
>>> waterfall = PandasWaterfall()
>>> print(waterfall.to_markdown(index=True))
| | Table | col1 | Δ col1 | Rows | Δ Rows | Reason | Configurations flag |
|---:|:-------|-------:|---------:|-------:|---------:|:--------|:--------------------|
| 0 | table1 | 50 | 0 | 2727 | 0 | example | to_markdown |
| 1 | table1 | 150 | 100 | 2827 | 0 | example | to_markdown |
>>> print(waterfall.to_markdown(index=False))
| Table | col1 | Δ col1 | Rows | Δ Rows | Reason | Configurations flag |
|:-------|-------:|---------:|-------:|---------:|:--------|:--------------------|
| table1 | 50 | 0 | 2727 | 0 | example | to_markdown |
| table1 | 150 | 100 | 2827 | 0 | example | to_markdown |
Returns:
Type | Description |
---|---|
str
|
DataFrame in Markdown-friendly format |
Source code in waterfall_logging/log.py
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
Read from Markdown file
Read Waterfall logging tables from Markdown files.
Under the hood uses pandas.read_table.
All arguments that can be provided for pandas.read_table()
, can also be used in this function.
Some useful arguments:
- The seperator in our markdown file is a pipe:
sep=|
. - The header with column names start at row index:
header=0
. - The markdown file does not contain an index column:
index_col=False
. - The row that separates the headers from the values is on the first row:
skiprows=[1]
. - Markdowns column names are preceded with initial spaces, to be removed when reading:
skipinitialspace=True
.
Reads table from Markdown file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filepath_or_buffer |
str, path object or file-like object
|
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
expected. A local file could be: file://localhost/path/to/table.csv.
If you want to pass in a path object, pandas accepts any |
required |
columns |
Lists[str]
|
Specifies which column to read in and log |
None
|
Examples:
>>> f = open('output/tests/read_markdown_table.md', 'r')
>>> print(f.read())
| Table | col1 | Δ col1 | Rows | Δ Rows | Reason | Configurations flag |
|:-------|-------:|---------:|-------:|---------:|:--------|:----------------------|
| table1 | 50 | 0 | 2727 | 0 | initial | read_markdown |
| table1 | 150 | 100 | 2827 | 0 | add-on | read_markdown |
| table1 | 250 | 100 | 2927 | 100 | extra | read_markdown |
>>> waterfall = PandasWaterfall()
>>> waterfall.read_markdown(
... filepath_or_buffer='output/tests/read_markdown_table.md',
.... sep='|', header=0, index_col=False, skiprows=[1], skipinitialspace=True
... )
>>> print(waterfall._log)
Table col1 Δ col1 Rows Δ Rows Reason Configurations flag
0 table1 50 0 2727 0 example read_markdown
1 table1 150 100 2827 0 add-on read_markdown
1 table1 250 100 2927 0 extra read_markdown
>>> print(type(waterfall._log))
<class 'pandas.core.frame.DataFrame'>
Returns:
Type | Description |
---|---|
None
|
None |
Source code in waterfall_logging/log.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|
Plot Waterfall
Plots Waterfall logging tables in a chart.
Under the hood plots uses a Plotly Waterfall chart plotly.graph_objects.Waterfall.
Note
Make sure to use an unique reason
arguments for each logging step, otherwise your plot will look strange!
Plots a logging DataFrame column in a waterfall chart.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_col |
str
|
Specifies column that contains absolute value counts for y-axis of plot |
'Rows'
|
y_col_delta |
str
|
Specifies column that contains delta value counts for y-axis of plot |
'Δ Rows'
|
x_col |
str
|
Specifies column that contains the filtering explanation for x-axis of plot |
'Reason'
|
drop_zero_delta |
bool
|
Whether to remove rows for |
False
|
Examples:
>>> waterfall = PandasWaterfall()
>>> fig = waterfall.plot(y_col='Rows', y_col_delta='Δ Rows', x_col='Reason',
... textfont=dict(family='sans-serif', size=11),
... connector={'line': {'color': 'rgba(0,0,0,0)'}},
... totals={'marker': {'color': '#dee2e6', 'line': {'color': '#dee2e6', 'width': 1}}}
... )
Returns:
Type | Description |
---|---|
go.Figure
|
go.Figure: waterfall chart |
Source code in waterfall_logging/log.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
See below for a more in-depth example, including fig.update_layout
and fig.update_traces
.
from waterfall_logging.log import PandasWaterfall
waterfall_log = PandasWaterfall()
waterfall_log.read_markdown(filepath_or_buffer='output/tests/read_markdown_table.md',
sep='|', header=0, index_col=False, skiprows=[1], skipinitialspace=True
)
fig = waterfall_log.plot(y_col='Rows',
textfont=dict(family='sans-serif', size=11),
connector={'line': {'color': 'rgba(0,0,0,0)'}},
totals={'marker': {'color': '#dee2e6', 'line': {'color': '#dee2e6', 'width': 1}}}
)
fig.update_layout(
autosize=True,
width=1000,
height=1000,
title=f'Data filtering steps',
xaxis=dict(title='Filtering steps'),
yaxis=dict(title='# of entries'),
showlegend=False,
waterfallgroupgap=0.1,
)
fig.update_traces(
textposition='outside',
)
fig.write_image('output/tests/read_markdown_table.png')