Log
This part of the project documentation focuses on
an information-oriented approach. Use it as a
reference for the technical implementation of
waterfall-logging.log
.
Both PandasWaterfall
and SparkWaterfall
inherit from the Waterfall
base class.
Please refer to the methods available in both implementations in the Waterfall
section below.
PandasWaterfall
Bases: Waterfall
Logs a Pandas DataFrame on each filtering step in waterfall fashion.
Source code in waterfall_logging/log.py
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
SparkWaterfall
Bases: Waterfall
Logs a PySpark DataFrame on each filtering step in waterfall fashion.
Source code in waterfall_logging/log.py
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
|
Waterfall
Bases: abc.ABC
Logs a table on each filtering step in waterfall fashion.
Source code in waterfall_logging/log.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
__init__
__init__(table_name: str | None = None, columns: List[str] | None = None, distinct_columns: List[str] | None = None, dropna: bool = False, delta_prefix: str = 'Δ ', row_count_column: str = 'Rows')
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table_name |
str
|
Specifies the name of the table to log |
None
|
columns |
Lists[str]
|
Specifies which columns to log |
None
|
distinct_columns |
List[str]
|
Specifies which distinct column values to log |
None
|
delta_prefix |
str
|
Prefix for column names with discrete difference (delta) with previous row |
'Δ '
|
dropna |
bool
|
Whether to exclude NaN in the row counts |
False
|
row_count_column |
str
|
Column name for an added column that counts rows in table |
'Rows'
|
Source code in waterfall_logging/log.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
log
log(table: pd.DataFrame | pyspark.sql.DataFrame, reason: str | None = None, configuration_flag: str | None = None, table_name: str | None = None) -> None
Logs table (distinct) counts to logging DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table |
pd.DataFrame
|
DataFrame that the filtering is applied to |
required |
reason |
str
|
Specifies reasoning for DataFrame filtering step |
None
|
configuration_flag |
str
|
Specifies configurations flag used for DataFrame filtering step |
None
|
table_name |
str
|
First column in table is the |
None
|
Examples:
>>> waterfall = PandasWaterfall()
>>> waterfall.log(table, reason='Filtered in-scope bicycles', configuration_flag='inscope=True',
... table_name='sample_table')
Returns:
Type | Description |
---|---|
None
|
None |
Source code in waterfall_logging/log.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|
plot
plot(*args, y_col: str = 'Rows', y_col_delta: str = 'Δ Rows', x_col: str = 'Reason', drop_zero_delta: bool = False, **kwargs) -> go.Figure
Plots a logging DataFrame column in a waterfall chart.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_col |
str
|
Specifies column that contains absolute value counts for y-axis of plot |
'Rows'
|
y_col_delta |
str
|
Specifies column that contains delta value counts for y-axis of plot |
'Δ Rows'
|
x_col |
str
|
Specifies column that contains the filtering explanation for x-axis of plot |
'Reason'
|
drop_zero_delta |
bool
|
Whether to remove rows for |
False
|
Examples:
>>> waterfall = PandasWaterfall()
>>> fig = waterfall.plot(y_col='Rows', y_col_delta='Δ Rows', x_col='Reason',
... textfont=dict(family='sans-serif', size=11),
... connector={'line': {'color': 'rgba(0,0,0,0)'}},
... totals={'marker': {'color': '#dee2e6', 'line': {'color': '#dee2e6', 'width': 1}}}
... )
Returns:
Type | Description |
---|---|
go.Figure
|
go.Figure: waterfall chart |
Source code in waterfall_logging/log.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
read_markdown
read_markdown(filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], columns: List[str] | None = None, *args, **kwargs) -> None
Reads table from Markdown file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filepath_or_buffer |
str, path object or file-like object
|
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
expected. A local file could be: file://localhost/path/to/table.csv.
If you want to pass in a path object, pandas accepts any |
required |
columns |
Lists[str]
|
Specifies which column to read in and log |
None
|
Examples:
>>> f = open('output/tests/read_markdown_table.md', 'r')
>>> print(f.read())
| Table | col1 | Δ col1 | Rows | Δ Rows | Reason | Configurations flag |
|:-------|-------:|---------:|-------:|---------:|:--------|:----------------------|
| table1 | 50 | 0 | 2727 | 0 | initial | read_markdown |
| table1 | 150 | 100 | 2827 | 0 | add-on | read_markdown |
| table1 | 250 | 100 | 2927 | 100 | extra | read_markdown |
>>> waterfall = PandasWaterfall()
>>> waterfall.read_markdown(
... filepath_or_buffer='output/tests/read_markdown_table.md',
.... sep='|', header=0, index_col=False, skiprows=[1], skipinitialspace=True
... )
>>> print(waterfall._log)
Table col1 Δ col1 Rows Δ Rows Reason Configurations flag
0 table1 50 0 2727 0 example read_markdown
1 table1 150 100 2827 0 add-on read_markdown
1 table1 250 100 2927 0 extra read_markdown
>>> print(type(waterfall._log))
<class 'pandas.core.frame.DataFrame'>
Returns:
Type | Description |
---|---|
None
|
None |
Source code in waterfall_logging/log.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|
to_markdown
to_markdown(*args, index = False, **kwargs)
Print DataFrame in Markdown-friendly format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
bool
|
Add index (row) labels |
False
|
Examples:
>>> waterfall = PandasWaterfall()
>>> print(waterfall.to_markdown(index=True))
| | Table | col1 | Δ col1 | Rows | Δ Rows | Reason | Configurations flag |
|---:|:-------|-------:|---------:|-------:|---------:|:--------|:--------------------|
| 0 | table1 | 50 | 0 | 2727 | 0 | example | to_markdown |
| 1 | table1 | 150 | 100 | 2827 | 0 | example | to_markdown |
>>> print(waterfall.to_markdown(index=False))
| Table | col1 | Δ col1 | Rows | Δ Rows | Reason | Configurations flag |
|:-------|-------:|---------:|-------:|---------:|:--------|:--------------------|
| table1 | 50 | 0 | 2727 | 0 | example | to_markdown |
| table1 | 150 | 100 | 2827 | 0 | example | to_markdown |
Returns:
Type | Description |
---|---|
str
|
DataFrame in Markdown-friendly format |
Source code in waterfall_logging/log.py
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|